Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.089
Filtrar
1.
Nat Metab ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702440

RESUMO

Acetate, a precursor of acetyl-CoA, is instrumental in energy production, lipid synthesis and protein acetylation. However, whether acetate reprogrammes tumour metabolism and plays a role in tumour immune evasion remains unclear. Here, we show that acetate is the most abundant short-chain fatty acid in human non-small cell lung cancer tissues, with increased tumour-enriched acetate uptake. Acetate-derived acetyl-CoA induces c-Myc acetylation, which is mediated by the moonlighting function of the metabolic enzyme dihydrolipoamide S-acetyltransferase. Acetylated c-Myc increases its stability and subsequent transcription of the genes encoding programmed death-ligand 1, glycolytic enzymes, monocarboxylate transporter 1 and cell cycle accelerators. Dietary acetate supplementation promotes tumour growth and inhibits CD8+ T cell infiltration, whereas disruption of acetate uptake inhibits immune evasion, which increases the efficacy of anti-PD-1-based therapy. These findings highlight a critical role of acetate promoting tumour growth beyond its metabolic role as a carbon source by reprogramming tumour metabolism and immune evasion, and underscore the potential of controlling acetate metabolism to curb tumour growth and improve the response to immune checkpoint blockade therapy.

2.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 233-240, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38650128

RESUMO

Skin photoaging affects appearance and is associated with a variety of skin diseases, even skin cancer. Therefore, the prevention and treatment of skin photoaging is very important. However, there is a lack of effective evaluation methods, so it is an urgent problem to explore a comprehensive, non-invasive and in vivo evaluation method. Adipose-derived mesenchymal stem cells (ADSCs) are widely used to improve skin conditions as easier to obtain and positive effects. Recently, as the development of ultrasound technology, skin ultrasound has been widely used. Changes in skin layer and structure can be observed by high-frequency ultrasound (HFUS). In addition, Shear wave elastography (SWE) technology can be used to monitor the change of skin hardness. However, it is necessary to further explore the ultrasound parameters in interpreting histological changes. We simulate the progression and treatment process of human skin photoaging by using UVB-induced nude mice skin photoaging model and ADSCs injection. The analysis of the degree and therapeutic effect of skin photoaging was conducted by HFUS, SWE and to verify with histopathology. Our study aims to clarify the value of HFUS combined SWE techniques in evaluating the degree and therapeutic efficacy of skin photoaging, which provides theoretical basis for diagnosis and treatment evaluation systems.


Assuntos
Células-Tronco Mesenquimais , Camundongos Nus , Envelhecimento da Pele , Pele , Raios Ultravioleta , Animais , Envelhecimento da Pele/efeitos da radiação , Células-Tronco Mesenquimais/citologia , Humanos , Pele/efeitos da radiação , Pele/patologia , Tecido Adiposo/citologia , Técnicas de Imagem por Elasticidade , Transplante de Células-Tronco Mesenquimais/métodos , Camundongos , Feminino
3.
Water Res ; 256: 121645, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38653093

RESUMO

Mercury contamination is a global concern, and the degradation and detoxification of methylmercury have gained significant attention due to its neurotoxicity and biomagnification within the food chain. However, the currently known pathways of abiotic demethylation are limited to light-induced photodegradation process and little is known about light-independent abiotic demethylation of methylmercury. In this study, we reported a novel abiotic pathway for the degradation of methylmercury through the oxidation of both mineral structural iron(II) and surface-adsorbed iron(II) in the absence of light. Our findings reveal that methylmercury can be oxidatively degraded by reactive oxygen species, specifically hydroxyl and superoxide radicals, which are generated from the oxidation of iron(II) minerals under dark conditions. Surprisingly, Hg(0) trapping experiments demonstrated that inorganic Hg(II) resulting from the oxidative degradation of methylmercury was rapidly reduced to gaseous Hg(0) by iron(II) minerals. The demethylation of methylmercury, coupled with the generation of Hg(0), suggests a potential natural attenuation process for methylmercury. Our results highlight the underappreciated roles of iron(II) minerals in the abiotic degradation of methylmercury and the release of gaseous Hg(0) into the atmosphere.

4.
J Neurooncol ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630386

RESUMO

PURPOSE: Although ongoing studies are assessing the efficacy of new systemic therapies for patients with triple negative breast cancer (TNBC), the overwhelming majority have excluded patients with brain metastases (BM). Therefore, we aim to characterize systemic therapies and outcomes in a cohort of patients with TNBC and BM managed with stereotactic radiosurgery (SRS) and delineate predictors of increased survival. METHODS: We used our prospective patient registry to evaluate data from 2012 to 2023. We included patients who received SRS for TNBC-BM. A competing risk analysis was conducted to assess local and distant control. RESULTS: Forty-three patients with 262 tumors were included. The median overall survival (OS) was 16 months (95% CI 13-19 months). Predictors of increased OS after initial SRS include Breast GPA score > 1 (p < 0.001) and use of immunotherapy such as pembrolizumab (p = 0.011). The median time on immunotherapy was 8 months (IQR 4.4, 11.2). The median time to new CNS lesions after the first SRS treatment was 17 months (95% CI 12-22). The cumulative rate for development of new CNS metastases after initial SRS at 6 months, 1 year, and 2 years was 23%, 40%, and 70%, respectively. Thirty patients (70%) underwent multiple SRS treatments, with a median time of 5 months (95% CI 0.59-9.4 months) for the appearance of new CNS metastases after second SRS treatment. CONCLUSIONS: TNBC patients with BM can achieve longer survival than might have been previously anticipated with median survival now surpassing one year. The use of immunotherapy is associated with increased median OS of 23 months.

5.
Am J Reprod Immunol ; 91(4): e13847, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38661639

RESUMO

PROBLEM: Polycystic ovary syndrome (PCOS), a prevalent endocrine-metabolic disorder, presents considerable therapeutic challenges due to its complex and elusive pathophysiology. METHOD OF STUDY: We employed three machine learning algorithms to identify potential biomarkers within a training dataset, comprising GSE138518, GSE155489, and GSE193123. The diagnostic accuracy of these biomarkers was rigorously evaluated using a validation dataset using area under the curve (AUC) metrics. Further validation in clinical samples was conducted using PCR and immunofluorescence techniques. Additionally, we investigate the complex interplay among immune cells in PCOS using CIBERSORT to uncover the relationships between the identified biomarkers and various immune cell types. RESULTS: Our analysis identified ACSS2, LPIN1, and NR4A1 as key mitochondria-related biomarkers associated with PCOS. A notable difference was observed in the immune microenvironment between PCOS patients and healthy controls. In particular, LPIN1 exhibited a positive correlation with resting mast cells, whereas NR4A1 demonstrated a negative correlation with monocytes in PCOS patients. CONCLUSION: ACSS2, LPIN1, and NR4A1 emerge as PCOS-related diagnostic biomarkers and potential intervention targets, opening new avenues for the diagnosis and management of PCOS.


Assuntos
Biomarcadores , Mitocôndrias , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares , Síndrome do Ovário Policístico , Humanos , Síndrome do Ovário Policístico/imunologia , Síndrome do Ovário Policístico/metabolismo , Feminino , Biomarcadores/metabolismo , Mitocôndrias/metabolismo , Aprendizado de Máquina , Adulto , Mastócitos/imunologia , Mastócitos/metabolismo
6.
Environ Int ; 186: 108632, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38583296

RESUMO

Plastic fragments are widely found in the soil profile of terrestrial ecosystems, forming plastic footprint and posing increasing threat to soil functionality and carbon (C) footprint. It is unclear how plastic footprint affects C cycling, and in particularly permanent C sequestration. Integrated field observations (including 13C labelling) were made using polyethylene and polylactic acid plastic fragments (low-, medium- and high-concentrations as intensifying footprint) landfilling in soil, to track C flow along soil-plant-atmosphere continuum (SPAC). The result indicated that increased plastic fragments substantially reduced photosynthetic C assimilation (p < 0.05), regardless of fragment degradability. Besides reducing C sink strength, relative intensity of C emission increased significantly, displaying elevated C source. Moreover, root C fixation declined significantly from 21.95 to 19.2 mg m-2, and simultaneously root length density, root weight density, specific root length and root diameter and surface area were clearly reduced. Similar trends were observed in the two types of plastic fragments (p > 0.05). Particularly, soil aggregate stability was significantly lowered as affected by plastic fragments, which accelerated the decomposition rate of newly sequestered C (p < 0.05). More importantly, net C rhizodeposition declined averagely from 39.77 to 29.41 mg m-2, which directly led to significant decline of permanent C sequestration in soil. Therefore, increasing plastic footprint considerably worsened C footprint regardless of polythene and biodegradable fragments. The findings unveiled the serious effects of plastic residues on permanent C sequestration across SPAC, implying that current C assessment methods clearly overlook plastic footprint and their global impact effects.


Assuntos
Pegada de Carbono , Plásticos , Solo , Solo/química , Carbono/análise , Atmosfera/química , Ciclo do Carbono , Ecossistema , Plantas , Sequestro de Carbono , Monitoramento Ambiental/métodos
7.
Heliyon ; 10(7): e28742, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38590882

RESUMO

Cognitive ability, as an early human capital, has always been an important research object in modern education and labor economics. Despite growing awareness of the importance of height in individual growth and development, there are few empirical studies on height and cognitive ability. Using the data from the China Education Panel Survey, this paper examined the impact of height on the cognitive ability of adolescents and explored the reasons behind the Chinese pursuit of height growth and the potential impact mechanism. In this paper, comprehensive analysis ability was taken as the representative of cognitive ability. The empirical results showed that height was positively correlated with cognitive ability. From the perspective of the influence mechanism, the hypothesis that height reflected self-esteem, health, non-cognitive ability, and other influences on cognitive ability was excluded. To correct the errors that endogenous problems may cause, we used the PSM method and "age at first menstruation " and "age at first wet dream" as instrumental variables to correct them. The results showed that height still affected cognitive ability, with taller people having higher cognitive ability.

8.
World J Diabetes ; 15(3): 530-551, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38591077

RESUMO

BACKGROUND: Diabetic kidney disease (DKD) is one of the serious complications of diabetes mellitus, and the existing treatments cannot meet the needs of today's patients. Traditional Chinese medicine has been validated for its efficacy in DKD after many years of clinical application. However, the specific mechanism by which it works is still unclear. Elucidating the molecular mechanism of the Nardostachyos Radix et Rhizoma-rhubarb drug pair (NRDP) for the treatment of DKD will provide a new way of thinking for the research and development of new drugs. AIM: To investigate the mechanism of the NRDP in DKD by network pharmacology combined with molecular docking, and then verify the initial findings by in vitro experiments. METHODS: The Traditional Chinese Medicine Systems Pharmacology (TCMSP) database was used to screen active ingredient targets of NRDP. Targets for DKD were obtained based on the Genecards, OMIM, and TTD databases. The VENNY 2.1 database was used to obtain DKD and NRDP intersection targets and their Venn diagram, and Cytoscape 3.9.0 was used to build a "drug-component-target-disease" network. The String database was used to construct protein interaction networks. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and Gene Ontology analysis were performed based on the DAVID database. After selecting the targets and the active ingredients, Autodock software was used to perform molecular docking. In experimental validation using renal tubular epithelial cells (TCMK-1), we used the Cell Counting Kit-8 assay to detect the effect of NRDP on cell viability, with glucose solution used to mimic a hyperglycemic environment. Flow cytometry was used to detect the cell cycle progression and apoptosis. Western blot was used to detect the protein expression of STAT3, p-STAT3, BAX, BCL-2, Caspase9, and Caspase3. RESULTS: A total of 10 active ingredients and 85 targets with 111 disease-related signaling pathways were obtained for NRDP. Enrichment analysis of KEGG pathways was performed to determine advanced glycation end products (AGEs)-receptor for AGEs (RAGE) signaling as the core pathway. Molecular docking showed good binding between each active ingredient and its core targets. In vitro experiments showed that NRDP inhibited the viability of TCMK-1 cells, blocked cell cycle progression in the G0/G1 phase, and reduced apoptosis in a concentration-dependent manner. Based on the results of Western blot analysis, NRDP differentially downregulated p-STAT3, BAX, Caspase3, and Caspase9 protein levels (P < 0.01 or P < 0.05). In addition, BAX/BCL-2 and p-STAT3/STAT3 ratios were reduced, while BCL-2 and STAT3 protein expression was upregulated (P < 0.01). CONCLUSION: NRDP may upregulate BCL-2 and STAT3 protein expression, and downregulate BAX, Caspase3, and Caspase9 protein expression, thus activating the AGE-RAGE signaling pathway, inhibiting the vitality of TCMK-1 cells, reducing their apoptosis. and arresting them in the G0/G1 phase to protect them from damage by high glucose.

9.
Nat Commun ; 15(1): 2991, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582753

RESUMO

All-solid-state batteries using Si as the anode have shown promising performance without continual solid-electrolyte interface (SEI) growth. However, the first cycle irreversible capacity loss yields low initial Coulombic efficiency (ICE) of Si, limiting the energy density. To address this, we adopt a prelithiation strategy to increase ICE and conductivity of all-solid-state Si cells. A significant increase in ICE is observed for Li1Si anode paired with a lithium cobalt oxide (LCO) cathode. Additionally, a comparison with lithium nickel manganese cobalt oxide (NCM) reveals that performance improvements with Si prelithiation is only applicable for full cells dominated by high anode irreversibility. With this prelithiation strategy, 15% improvement in capacity retention is achieved after 1000 cycles compared to a pure Si. With Li1Si, a high areal capacity of up to 10 mAh cm-2 is attained using a dry-processed LCO cathode film, suggesting that the prelithiation method may be suitable for high-loading next-generation all-solid-state batteries.

10.
J Chromatogr A ; 1724: 464923, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38653039

RESUMO

Efficient separation of deoxyribonucleic acid (DNA) through magnetic nanoparticles (MN) is a widely used biotechnology. Hedgehog-inspired MNs (HMN) possess a high-surface-area due to the distinct burr-like structure of hedgehog, but there is no report about the usage of HMN for DNA extraction. Herein, to improve the selection of MN and illustrate the performance of HMN for DNA separation, HMN and silica-coated Fe3O4 nanoparticles (Fe3O4@SiO2) were fabricated and compared for the high-efficient separation of pathogenic bacteria of DNA. Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) are typical Gram-negative and Gram-positive bacteria and are selected as model pathogenic bacteria. To enhance the extraction efficiency of two kinds of MNs, various parameters, including pretreatment, lysis, binding and elution conditions, have been optimized in detail. In most separation experiments, the DNA yield of HMN was higher than that of Fe3O4@SiO2. Therefore, a HMN-based magnetic solid-phase microextraction (MSPE) and quantitative real-time PCR (qPCR) were integrated and used to detect pathogenic bacteria in real samples. Interestingly, the HMN-based MSPE combined qPCR strategy exhibited high sensitivity with a limit of detection of 2.0 × 101 CFU mL-1 for E. coli and 4.0 × 101 CFU mL-1 for S. aureus in orange juice, and 2.8 × 102 CFU mL-1 for E. coli and 1.1 × 102 CFU mL-1 for S. aureus in milk, respectively. The performance of the proposed strategy was significantly better than that of commercial kit. This work could prove that the novel HMN could be applicable for the efficient separation of DNA from complex biological samples.


Assuntos
DNA Bacteriano , Escherichia coli , Nanopartículas de Magnetita , Microextração em Fase Sólida , Staphylococcus aureus , Staphylococcus aureus/isolamento & purificação , Staphylococcus aureus/química , Escherichia coli/química , Escherichia coli/isolamento & purificação , Nanopartículas de Magnetita/química , DNA Bacteriano/isolamento & purificação , DNA Bacteriano/análise , Microextração em Fase Sólida/métodos , Dióxido de Silício/química , Reação em Cadeia da Polimerase em Tempo Real , Limite de Detecção , Ouriços/microbiologia
11.
Artigo em Inglês | MEDLINE | ID: mdl-38683601

RESUMO

Although the association between persistent hypertension and the compromise of both micro- and macro-circulatory functions is well recognized, a significant gap in quantitative investigations exploring the interplay between microvascular and macrovascular injuries still exists. In this study, the authors looked into the relationship between brachial-ankle pulse wave velocity (baPWV) and hypertensive retinopathy in treated hypertensive adults. The authors conducted a cross-sectional study of treated hypertensive patients with the last follow-up data from the China Stoke Primary Prevention Trial (CSPPT) in 2013. With the use of PWV/ABI instruments, baPWV was automatically measured. The Keith-Wagener-Barker classification was used to determine the diagnosis of hypertensive retinopathy. The odds ratio (OR) and 95% confidence interval (CI) for the connection between baPWV and hypertensive retinopathy were determined using multivariable logistic regression models. The OR curves were created using a multivariable-adjusted restricted cubic spline model to investigate any potential non-linear dose-response relationships between baPWV and hypertensive retinopathy. A total of 8514 (75.5%) of 11,279 participants were diagnosed with hypertensive retinopathy. The prevalence of hypertensive retinopathy increased from the bottom quartile of baPWV to the top quartile: quartile 1: 70.7%, quartile 2: 76.1%, quartile 3: 76.7%, quartile 4: 78.4%. After adjusting for potential confounders, baPWV was positively associated with hypertensive retinopathy (OR = 1.05, 95% CI, 1.03-1.07, p < .001). Compared to those in the lowest baPWV quartile, those in the highest baPWV quartile had an odds ratio for hypertensive retinopathy of 1.61 (OR = 1.61, 95% CI: 1.37-1.89, p < .001). Two-piece-wise logistic regression model demonstrated a nonlinear relationship between baPWV and hypertensive retinopathy with an inflection point of 17.1 m/s above which the effect was saturated .

12.
Res Sq ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38659862

RESUMO

Objective: Intrauterine factors can impact fetal and child growth and may underlie the developmental origins of childhood obesity. Sex steroid hormone exposure during pregnancy is a plausible target because of the impact on placental vascularization, nutrient transportation, bone growth, adipogenesis, and epigenetic modifications. In this study we assessed maternal sex steroid hormones in each trimester in relation to birthweight, neonatal adiposity, and infant growth trajectories, and evaluate sensitive windows of development. Methods: Participants from a prospective pregnancy cohort who delivered at term were included in the analysis (n=252). Estrone, estradiol, and estriol, as well as total and free testosterone throughout gestation were assessed using high-performance liquid chromatography and tandem mass spectrometry. Path analyses were used to assess the direct associations of sex steroid hormones in each trimester with birth outcomes and infant growth trajectories (birth to 12 months) adjusting for covariates and considering moderation by sex. Results: The associations between prenatal sex steroid hormones and fetal/infant growth varied by sex and hormone assessment timing. First trimester estrone were associated with higher birthweight z-scores (ß=0.37, 95%CI: 0.02, 0.73) and truncal skinfold thickness (TST) at birth (ß=0.94, 95%CI: 0.34, 1.54) in female infants. Third trimester total testosterone was associated with higher TST at birth (ß=0.61, 95%CI: 0.02, 1.21) in male infants. First trimester estrone/estradiol and first and third trimesters testosterone were associated with lower probabilities of high stable weight trajectory compared to low stable weight trajectory (Estrone: ß=-3.87, 95%CI: -6.59, -1.16; First trimester testosterone: ß=-3.53, 95%CI: -6.63, -0.43; Third trimester testosterone: ß=-3.67, 95%CI: -6.66, -0.69) during infancy in male infants. Conclusions: We observed associations between prenatal sex steroid hormone exposure and birthweight, neonatal adiposity and infant growth that were sex and gestational timing dependent. Our findings suggest further investigation on additional mechanisms linking prenatal sex steroid exposure and fetal/postnatal growth is needed.

13.
Genes (Basel) ; 15(4)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38674340

RESUMO

Gene duplication is a key biological process in the evolutionary history of plants and an important driving force for the diversification of genomic and genetic systems. Interactions between the calcium sensor calcineurin B-like protein (CBL) and its target, CBL-interacting protein kinase (CIPK), play important roles in the plant's response to various environmental stresses. As a food crop with important economic and research value, turnip (Brassica rapa var. rapa) has been well adapted to the environment of the Tibetan Plateau and become a traditional crop in the region. The BrrCIPK9 gene in turnip has not been characterized. In this study, two duplicated genes, BrrCIPK9.1 and BrrCIPK9.2, were screened from the turnip genome. Based on the phylogenetic analysis, BrrCIPK9.1 and BrrCIPK9.2 were found located in different sub-branches on the phylogenetic tree. Real-time fluorescence quantitative PCR analyses revealed their differential expression levels between the leaves and roots and in response to various stress treatments. The differences in their interactions with BrrCBLs were also revealed by yeast two-hybrid analyses. The results indicate that BrrCIPK9.1 and BrrCIPK9.2 have undergone Asparagine-alanine-phenylalanine (NAF) site divergence during turnip evolution, which has resulted in functional differences between them. Furthermore, BrrCIPK9.1 responded to high-pH (pH 8.5) stress, while BrrCIPK9.2 retained its ancestral function (low K+), thus providing further evidence of their functional divergence. These functional divergence genes facilitate turnip's good adaptation to the extreme environment of the Tibetan Plateau. In summary, the results of this study reveal the characteristics of the duplicated BrrCIPK9 genes and provide a basis for further functional studies of BrrCBLs-BrrCIPKs in turnip.


Assuntos
Brassica rapa , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas , Brassica rapa/genética , Brassica rapa/crescimento & desenvolvimento , Brassica rapa/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genes Duplicados/genética , Estresse Fisiológico/genética
14.
Nutrients ; 16(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38674804

RESUMO

Cariogenic microorganisms are crucial pathogens contributing to the development of early childhood caries. Snacks provide fermentable carbohydrates, altering oral pH levels and potentially affecting microorganism colonization. However, the relationship between snack intake and cariogenic microorganisms like Candida and Streptococcus mutans in young children is still unclear. This study aimed to assess this association in a prospective underserved birth cohort. Data from children aged 12 to 24 months, including oral microbial assays and snack intake information, were analyzed. Sweet and non-sweet indices based on the cariogenic potential of 15 snacks/drinks were created. Mixed-effects models were used to assess the associations between sweet and non-sweet indices and S. mutans and Candida carriage. Random forest identified predictive factors of microorganism carriage. Higher non-sweet index scores were linked to increased S. mutans carriage in plaques (OR = 1.67, p = 0.01), potentially strengthening with age. Higher sweet index scores at 12 months were associated with increased Candida carriage, reversing at 24 months. Both indices were top predictors of S. mutans and Candida carriage. These findings underscore the associations between snack intake and cariogenic microorganism carriage and highlight the importance of dietary factors in oral health management for underserved young children with limited access to dental care and healthy foods.


Assuntos
Candida , Cárie Dentária , Boca , Lanches , Streptococcus mutans , Humanos , Lactente , Feminino , Masculino , Pré-Escolar , Cárie Dentária/microbiologia , Cárie Dentária/epidemiologia , Streptococcus mutans/isolamento & purificação , Candida/isolamento & purificação , Estudos Prospectivos , Boca/microbiologia , Classe Social , Baixo Nível Socioeconômico
15.
Chemosphere ; 356: 141840, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38582167

RESUMO

The extensive use of tetracyclines (TCs) has led to their widespread distribution in the environment, causing serious harm to ecosystems because of their toxicity and resistance to decomposition. Adsorption is presently the principal approach to dispose of TCs, and the development of excellent adsorbents is crucial to TC removal. Herein, a novel amorphous cobalt carbonate hydroxide (ACCH) was successfully prepared by a one-step solvothermal method, which was identified as Co(CO3)0·63(OH)0.74·0.07H2O. The ultimate adsorption capacity of ACCH for TC reaches 2746 mg g-1, and the excellent adsorption performance can be maintained over a wide pH (3.0-11.0) and temperature (10-70 °C) range. Moreover, ACCH also exhibits a wonderful adsorption performance for other organic contaminants, such as ciprofloxacin and Rhodamine B. The TC adsorption process can be reasonably described by the pseudo-second-order kinetic model, intraparticle model and Langmuir isothermal model. The experimental results in this work suggest that the excellent adsorption performance of ACCH is ascribed to the large specific surface area, alkaline characteristics and numerous functional groups of ACCH. Accordingly, this work provides a promising strategy for the development of highly-efficient adsorbents and demonstrates their application prospects in environmental remediation.


Assuntos
Carbonatos , Cobalto , Tetraciclina , Cobalto/química , Adsorção , Tetraciclina/química , Carbonatos/química , Cinética , Poluentes Químicos da Água/química , Nanoestruturas/química , Concentração de Íons de Hidrogênio , Temperatura , Antibacterianos/química
16.
BMC Genomics ; 25(1): 247, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443830

RESUMO

BACKGROUND: Ampelopsideae J. Wen & Z.L. Nie is a small-sized tribe of Vitaceae Juss., including ca. 47 species from four genera showing a disjunct distribution worldwide across all the continents except Antarctica. There are numerous species from the tribe that are commonly used as medicinal plants with immune-modulating, antimicrobial, and anti-hypertensive properties. The tribe is usually recognized into three clades, i.e., Ampelopsis Michx., Nekemias Raf., and the Southern Hemisphere clade. However, the relationships of the three clades differ greatly between the nuclear and the plastid topologies. There has been limited exploration of the chloroplast phylogenetic relationships within Ampelopsideae, and studies on the chloroplast genome structure of this tribe are only available for a few individuals. In this study, we aimed to investigate the evolutionary characteristics of plastid genomes of the tribe, including their genome structure and evolutionary insights. RESULTS: We sequenced, assembled, and annotated plastid genomes of 36 species from the tribe and related taxa in the family. Three main clades were recognized within Ampelopsideae, corresponding to Ampelopsis, Nekemias, and the Southern Hemisphere lineage, respectively, and all with 100% bootstrap supports. The genome sequences and content of the tribe are highly conserved. However, comparative analyses suggested that the plastomes of Nekemias demonstrate a contraction in the large single copy region and an expansion in the inverted repeat region, and possess a high number of forward and palindromic repeat sequences distinct from both Ampelopsis and the Southern Hemisphere taxa. CONCLUSIONS: Our results highlighted plastome variations in genome length, expansion or contraction of the inverted repeat region, codon usage bias, and repeat sequences, are corresponding to the three lineages of the tribe, which probably faced with different environmental selection pressures and evolutionary history. This study provides valuable insights into understanding the evolutionary patterns of plastid genomes within the Ampelopsideae of Vitaceae.


Assuntos
Genoma de Cloroplastos , Genomas de Plastídeos , Vitaceae , Humanos , Filogenia , Regiões Antárticas
17.
Am J Chin Med ; 52(2): 565-581, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38480502

RESUMO

L48H37 is a synthetic curcumin analog that has anticancer potentials. Here, we further explored the anticancer effect of L48H37 on oral cancer cells and its mechanistic acts. Cell cycle distribution was assessed using flow cytometric analysis. Apoptosis was elucidated by staining with PI/Annexin V and activation of the caspase cascade. Cellular signaling was explored using apoptotic protein profiling, Western blotting, and specific inhibitors. Our findings showed that L48H37 significantly reduced the cell viability of SCC-9 and HSC-3 cells, resulting in sub-G1 phase accumulation and increased apoptotic cells. Apoptotic protein profiling revealed that L48H37 increased cleaved caspase-3, and downregulated cellular inhibitor of apoptosis protein 1 (cIAP1) and X-linked inhibitor of apoptosis protein (XIAP) in SCC-9 cells, and the downregulated cIAP1 and XIAP in both oral cancer cells were also demonstrated by Western blotting. Meanwhile, L48H37 triggered the activation of caspases and mitogen-activated protein kinases (MAPKs). The involvement of c-Jun N-terminal kinase (JNK) and p38 MAPK (p38) in the L48H37-triggered apoptotic cascade in oral cancer cells was also elucidated by specific inhibitors. Collectively, these findings indicate that L48H37 has potent anticancer activity against oral cancer cells, which may be attributed to JNK/p38-mediated caspase activation and the resulting apoptosis. This suggests a potential benefit for L48H37 for the treatment of oral cancer.


Assuntos
Curcumina , Neoplasias Bucais , Humanos , Caspases/metabolismo , Curcumina/farmacologia , Linhagem Celular Tumoral , Apoptose , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Caspase 3/metabolismo , Neoplasias Bucais/tratamento farmacológico , Proteínas Inibidoras de Apoptose/farmacologia
18.
Ophthalmic Res ; 67(1): 211-220, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38484716

RESUMO

INTRODUCTION: This study aimed to compare retinal vascular parameters and density in patients with moyamoya disease using the optical coherence tomography angiography. METHODS: This clinical trial totally enrolls 78 eyes from 39 participants, and all these patients with moyamoya disease (N = 13) are set as experimental group and participants with health who matched with age and gender are considered as the control group (N = 26). Then all these participants receive optical coherence tomography angiography detection. Participants' general data are collected and analyzed. Skeleton density (SD) value, vessel density (VD) value, fractal dimension (FD) value, vessel diameter index (VDI) value, foveal avascular zone (FAZ) value are analyzed. RESULTS: A total of 39 participants are included in this study. The SD value in the experimental group was significantly lower than that in control group (0.175 [0.166, 0.181] vs. 0.184 [0.175, 0.188], p = 0.017). Similarly, the VD value in the experimental group was significantly lower than that in the control group (0.333 [0.320, 0.350] vs. 0.354 [0.337, 0.364], p = 0.024). Additionally, the FD value in the experimental group was significantly lower than that in the control group (2.088 [2.083, 2.094] vs. 2.096 [2.090, 2.101], p = 0.022). As for the VDI and FAZ, VDI and FAZ values in the experimental group were lower than those in the control group, there was no significant difference in VDI and FAZ values between the two groups. CONCLUSIONS: Our study, using non-invasive and rapid OCTA imaging, confirmed decreased retinal vascular parameters and density in patients with moyamoya disease.


Assuntos
Angiofluoresceinografia , Fundo de Olho , Doença de Moyamoya , Vasos Retinianos , Tomografia de Coerência Óptica , Humanos , Doença de Moyamoya/diagnóstico , Doença de Moyamoya/fisiopatologia , Doença de Moyamoya/diagnóstico por imagem , Feminino , Masculino , Vasos Retinianos/diagnóstico por imagem , Vasos Retinianos/patologia , Tomografia de Coerência Óptica/métodos , Estudos Retrospectivos , Angiofluoresceinografia/métodos , Adulto , Pessoa de Meia-Idade , Acuidade Visual , Adulto Jovem , Adolescente , Seguimentos
19.
Front Immunol ; 15: 1330021, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38433840

RESUMO

The prevalence rate of acute respiratory distress syndrome (ARDS) is estimated at approximately 10% in critically ill patients worldwide, with the mortality rate ranging from 17% to 39%. Currently, ARDS mortality is usually higher in patients with COVID-19, giving another challenge for ARDS treatment. However, the treatment efficacy for ARDS is far from satisfactory. The relationship between the gut microbiota and ARDS has been substantiated by relevant scientific studies. ARDS not only changes the distribution of gut microbiota, but also influences intestinal mucosal barrier through the alteration of gut microbiota. The modulation of gut microbiota can impact the onset and progression of ARDS by triggering dysfunctions in inflammatory response and immune cells, oxidative stress, cell apoptosis, autophagy, pyroptosis, and ferroptosis mechanisms. Meanwhile, ARDS may also influence the distribution of metabolic products of gut microbiota. In this review, we focus on the impact of ARDS on gut microbiota and how the alteration of gut microbiota further influences the immune function, cellular functions and related signaling pathways during ARDS. The roles of gut microbiota-derived metabolites in the development and occurrence of ARDS are also discussed.


Assuntos
Microbioma Gastrointestinal , Síndrome do Desconforto Respiratório , Humanos , Estresse Oxidativo , Apoptose , Autofagia
20.
Anal Chim Acta ; 1300: 342463, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38521572

RESUMO

BACKGROUND: 5-hydroxymethylcytosine (5hmC) as an epigenetic modification can regulate gene expression, and its abnormal level is related with various tumor invasiveness and poor prognosis. Nevertheless, the current methods for 5hmC assay usually involve expensive instruments/antibodies, radioactive risk, high background, laborious bisulfite treatment procedures, and non-specific/long amplification time. RESULTS: We develop a glycosylation-mediated fluorescent biosensor based on helicase-dependent amplification (HDA) for label-free detection of site-specific 5hmC in cancer cells with zero background signal. The glycosylated 5hmC-DNA (5ghmC) catalyzed by ß-glucosyltransferase (ß-GT) can be cleaved by AbaSI restriction endonuclease to generate two dsDNA fragments with sticky ends. The resultant dsDNA fragments are complementary to the biotinylated probes and ligated by DNA ligases, followed by being captured by magnetic beads. After magnetic separation, the eluted ligation products act as the templates to initiate HDA reaction, generating abundant double-stranded DNA (dsDNA) products within 20 min. The dsDNA products are measured in a label-free manner with SYBR Green I as an indicator. This biosensor can measure 5hmC with a detection limit of 2.75 fM and a wide linear range from 1 × 10-14 to 1 × 10-8 M, and it can discriminate as low as 0.001% 5hmC level in complex mixture. Moreover, this biosensor can measure site-specific 5hmC in cancer cells, and distinguish tumor cells from normal cells. SIGNIFICANCE: This biosensor can achieve a zero-background signal without the need of either 5hmC specific antibody or bisulfite treatment, and it holds potential applications in biological research and disease diagnosis.


Assuntos
5-Metilcitosina/análogos & derivados , Técnicas Biossensoriais , Neoplasias , Sulfitos , Glicosilação , DNA/genética , 5-Metilcitosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA